
From … to Scrum

Jurica Križanić

@jkrizanic

About me

● Currently: Java dev at comSysto GmBH
● 8+ years of experience
● Worked in 3 companies before - Java dev, tester,

CI/CD guy, educator, all arounder…
● A lot of projects (backend, frontend, CI, education)● A lot of projects (backend, frontend, CI, education)
● Holding several certificates (Java, Spring, Scrum

Master)
● Areas of interest: Java, CI/CD, lean & agile

Agenda

● What about Scrum thing and … ?
● Benefits of Scrum I’ve found
● Organization
● Technical part (writing code, code reviews, version

control, CI/CD)control, CI/CD)
● Social part (team/people, mindset)
● Conslusion

What about Scrum thing and ...?

● 3 companies before comSysto GmbH

● way of working so far - ...
• the same?
• always same mistakes

• I couldn’t believe some of those• I couldn’t believe some of those
• people not so keen to improve constantly
• “I am super developer, my code is the best”
• management without long term vision

● found very agile environment - Scrum

The current project setup

Benefits of Scrum I’ve found (1)

● Sprint
• 2-3 weeks long
• small chunks of work
• outcome and delivery at the end of every sprint
• feedback• feedback

● Scrum team = Dev Team + SM + PO
● Dev team

• trust
• self-organization
• pulling work, not pushed to us

Benefits of Scrum I’ve found (2)

Image source: http://www.accidentalcreative.com/teams/guide-to-insanely-productive-
meetings/

Benefits of Scrum I’ve found (2)
● Meetings

• always participated in “pointless never end”
meetings

• first impression: “way to many meetings”
• distraction for dev activities
• but not written law - skip sometimes
• every meeting has its purpose• every meeting has its purpose
• Scrum non-standard meetings

Daily standups
● the same time every day - reference point
● 15 min max (or reduce it to it)
● transparency

• good way of see who is/will doing what
● impediments visible
● get the info

Image source: agile42.com

Backlog refinement
● at the beginning: “it is time to code”
● upcoming work from backlog

• problems later if not participating
• Planning poker

● 4-6 times per sprint
● 90 minutes
● discussion● discussion

• discuss stories with right people
• ask questions, get answer

Image source: agile42.com

Sprint planning
● taking stories from the Backlog
● Dev team + SM + PO
● agree on commitment
● plan activities
● analyzing risk

Image source: agile42.com

Sprint review
● Present the outcome of work to PO
● Get instant feedback

• communication during the Sprint
• at the review meeting
• no waiting for 4-6 months for feedback

Image source:

Sprint retrospective
● What went well?
● What was not well?
● How can we improve?
● Measures to improve

• no doing the same mistake on and on
● Improvement groomings

Image source: http://mattagile.com

Not so Scrum related... Not so Scrum related...

Organization
● Team setup

• distributed in 4 locations
● Collaboration

• Jira + Confluence
• Previous experience:

– “Don’t bother us with Jira”
– funny SVN hook hack– funny SVN hook hack

• Handling tasks, issues, stories, agreements,
documentation

• Delivering working sofware (one of Agile values)
● Meetings

Technical part
• Writing code with tests (integration, unit…)

– no build with skiping tests
● Code reviews

– get and provide knowledge (not only formality)
– no need to convince people in benefits

● Version control
– Git - branching a lot (Bitbucket)– Git - branching a lot (Bitbucket)
– no need to go into SVN vs Git discussion

● CI/CD
– no need to convince people in benefits
– Ansible
– Bamboo + Bitbucket (DEV, TEST, SIT, REF)
– Jenkins (PROD)

Social part

● Team (1 SM, 2 POs, 7 DEV, 3 QA)

● people (junior-senior)

● mindset

• Previous:

• previously spent time in convincing people• previously spent time in convincing people

• Now:

• different now, no need to convince

• open for changes and improvements

• CI, CD, Tests, code review are must

Conclusion

● Change your mindset

● Collaborate and be transparent…

● Improve● Improve

● Tests are “must have”

● Clean code

● CI/CD is “must have”

Change & Improve

Transparency

Image source: http://www.firstlinesoftware.com/

Collaboration

Image source: www.box.com

Tests are must have

Image source: http://drdaveunleashed.com/

Clean code is must have

Image source: https://www.butterfly.com.au

Clean code is must have

Image source: http://galilsoftware.com/

Q & AQ & A

