JavaCrolB)

GOING REACTIVE WWITIH
RIKIAWE

JAVACRO Rovinj - May 2016

PV

UL

Going

Reactive with

_RxJava

So what does it mean for the App to be
Reactive?

His Majesty

Reactive App should be ...

Message-Driven
« Components communicate via asynchronous messages (errors are messages also)

Resilient
« System stays responsive in the face of failure

Elastic (Scalable)
 System stays responsive under varying workload

Responsive
 System responds in timely manner if at all possible

Orifwe putitinadiagram ...

(Responswe)
f B

(Scalable »(Resilient)

L(Message-Driven) J

OOP, State of the Union

Responsive
State and Behavior ‘ t | Error Handling up to
are Joined the Client

State is Mutated I]

We’ll pack Events
into Messages

The Good
The Bad

@ heugly

So how does RxJava fit into
all of this?

cvent-Driven > Message-Driven

Fverything is a message
* Including errors

Fveryone (each component) can be Producer and Consumer of
messages

Stream of
Messages
[Producer]—» —{ Consumer]
Ul Component Events Whoever’s
Remote Service Computation Result Subscribed

Scheduled Job Query Result

Making Streams of Messages with RxJava

Observable — Representation of the Message Producer

Observer — Representation of the I\/Iessage Consumer
* onNext
* onCompleted
* onkrror

onNext onNext
4 4
Observable Stream ! ‘ |
_— i >
of Messages | |
v v

onNext onCompleted

Making Streams of Messages with RxJava

Observable — Representation of the Message Producer

Observer — Representation of the I\/Iessage Consumer
* onNext
* onCompleted
* onkrror

onNext onkrror
' t
Observable Stream ! \:/ >
of Messages | 2\
v

onNext

Making an Observable

Predefined Observable templates
* Observable.from
* Observable.just
* Factory Methods

* Observable.interval , Observable.range , Observable.empty

List<String> list = Arrays.asList("blue", "red", "green", "yellow", "orange");
Observable<String> listObservable = Observable.from(list)

Observable<Character> justObservable = Observable.just('R', 'x', 'J', 'a', 'v', 'a');

Observable<Integer> rangeObservable Observable.range(l, 10);

Observable<Long> intervalObservable Observable.interval (500L, TimeUnit.MILLISECODS) ;

Making an Observable

The real Power lies in
* Observable.create

public static Observable<SomeDataType> getData (String someParameter) {

return Observable.create (subscriber -> {
try {
SomeDataType result = SomeService.getData (someParameter);
subscriber.onNext (result) ;
subscriber.onCompleted() ;
} catch (Exception e) {
subscriber.onError (e) ;
}
})

Consuming an Observable

At it’s Core very simple
* observableInstance.subscribe

observablelInstance.subscribe (new Observer<SomeDataType> () {

@Override
public void onNext (SomeDataType message) |
// Do something on each Message received

}

@Override
public void onError (Throwable error) {
// Do something on Error

}

@Override
public void onCompleted() {
// Do something when Observable completes
}
}) s

Consuming an Observable

At it’s Core very simple
* observableInstance.subscribe

observableInstance.subscribe (
(SomeDataType message) -> {/*onNext*/},
(Throwable error) -> {/*onError*/},
() -> {/*onCompleted*/}):

OOP + RxJava, State of the Union

(—v Responsive <—w

v TR i

_ J

Observer + Observable

Making the System Scalable

How to approach the problem
e Scaleup -l don’t think so

e Scale out - That’s more like it
« Alotof Cores and Memory!

Desired Characteristics of our System
* Program logic should execute in Parallel
» Data immutability is Allowed/Encouraged

The answer
* Functional programming

Making the System Scalable

Why FP Approach

 State Handled Transparently
* Highly composable

When we apply this to Rx world ...
» Data manipulation
« Composable FP style Observable methods

* State change
 Each change of state will be a new message in the Stream

Composable methods with RxJava

There are methods for
 Contentfiltering
* Time filtering
 Data transformation
e Stream composition

observablelInstance.filter(element -> element < 10)
observablelInstance. timeout (100, TimeUnit.MILLISECONDS)
observablelInstance.map (number -> number * number)

Observable<String> mergedObservable = Observable
.merge (firstObservable, secondObservable, thirdObservable);

Manipulating Streams with RxJava

va

\ 4

0.
'_l
=
'—l
RO
'_l
[
'_l
)

\ 4

OOP + RxJava, State of the Union

Responsive
Observable

Methods (FP style) 4_/\—>
|

Transparent State

Observer + Observable

WHEN the System Fails

With classic OOP the Client has to
* try/catch
* Resource cleanup

With RxJava the Client has to

e onkError
e Erroris a First-class Citizen

onNext onkrror
) $
Observable Stream ! \'1/
of Messages | N
v

onNext

Recovering from Errors

When the Error Occurs
e Observable finishes

e Observer’s recovery OptiOﬂS
* onkErrorReturn , onkrrorResumeNext, retry

mainObservable.onErrorReturn (throwable -> {
System.out.println ("The original feed failed with" + throwable);
return oneMoreMessage;

}) .subscribe (data -> {/* doSomething */});

mainObservable.onErrorResumeNext (throwable -> {
System.out.println ("The original feed failed with" + throwable);
return backupObservable;

}) .subscribe (data -> {/* doSomething */});

OOP + RxJava, State of the Union

Erroris a First-
Class Citizen

Methods (FP style)
|

«— >

Transparent State

Responsive
Observable

Observer + Observable

Let’s Get ResponsiVle

Responsive
* To Our Client
* Already improved Scalability and Resilience
* Asynchronous execution

Responsible
* To Our System (to our Resources)

Asynchronous Streams

“Out of the Box”

Main thread I

Stack

main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted)

Main thread I

Stack

main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted)

Main thread I

v

remoteService.getData ()

Stack
observable.subscribe
main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted)

Main thread I ®

v

remoteService.getData ()

Stack

remoteService.getData
observable.subscribe
main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted) subscriber.onNext (data)

T

Main thread I

v

remoteService.getData ()

Stack
observable.subscribe
main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted) subscriber.onNext (data)

T

Main thread I —=

v

remoteService.getData ()

Stack

subscriber.onNext
observable.subscribe
main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted) subscriber.onNext (data)

T

Main thread I —_— e

v v

remoteService.getData () subscriber.onCompleted ()

Stack
observable.subscribe
main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted) subscriber.onNext (data)

T

Main thread I —_— e

v v

remoteService.getData () subscriber.onCompleted ()

Stack

subscriber.onCompleted
observable.subscribe

main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted) subscriber.onNext (data)

T

Main thread I —_— e

v v

remoteService.getData ()

subscriber.onCompleted ()

Stack
observable.subscribe
main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted) subscriber.onNext (data)

T

Main thread } —_— e

v v

remoteService.getData ()

subscriber.onCompleted ()

Stack

main

Asynchronous Streams

“Out of the Box”

observable.subscribe
(onNext, onCompleted) subscriber.onNext (data)

| { t

Main thread i —_— e

v v

remoteService.getData ()

subscriber.onCompleted/ ()

Stack empty

Asynchronous Streams

Let’s get Asynchronous

* Thread handling with Observable
e subscribeOn (Scheduler) - Thread Observable will run on
* observeOn (Scheduler) - Thread Observerwill run on

e Available Schedulers
 immediate - use Caller Thread
* newThread - doworkon new Thread
 trampoline - enqueue work on Caller Thread
* io — Thread pool used for IO tasks
 computation - Thread pool used for Computation tasks

Asynchronous Streams

Asynchronous in practice

Main thread I

Asynchronous Streams

Asynchronous in practice

observable

.subscribeOn (Schedulers.io())
.ObserveOn (Schedulers. computation())
.subscribe (onNext, onCompleted)

Main thread I

Asynchronous Streams

Asynchronous in practice

observable

.subscribeOn (Schedulers.io())
.observeOn (Schedulers. computation())
.subscribe (onNext, onCompleted)

Main thread ¢

subscriber.onNext (data)

I
I
4

|0 thread —

v

remoteService.getData ()

Asynchronous Streams

Asynchronous in practice

observable

.subscribeOn (Schedulers.io())
.observeOn (Schedulers. computation())
.subscribe (onNext, onCompleted)

Main thread ¢

subscriber.onNext (data)

I
I
4

|0 thread —_

v

remoteService.getData ()

|
|
|
¢ o

Computation |

thread

Asynchronous Streams

Asynchronous in practice

observable

.subscribeOn (Schedulers.io())
.observeOn (Schedulers. computation())
.subscribe (onNext, onCompleted)

Main thread ¢
| subscriber.onNext (data)
| T subscriber.onCompleted/ ()
|0 thread : —e | T
v S
Computation | remoteService.getData () i i

thread

Responsible Client

Being Reactive isn’t just about doing something fast, it’s
about not doing it at all.

Or to be more precise, to do only what’s necessary.

Responsible Client

Being Responsible
* Observable works only when someone’s listening
* subscribe triggers Observable Stream

* Client (Consumer of Stream) tells us when he’s done listening
* unsubscribe

Responsible Client

Two flavors of Unsubscribing
* Client (Consumer) is unsubscribed from “outside”

Subscription subscription = observablelInstance.subscribe (
(Long message) -> {/*onNext*/},
(Throwable error) -> {/*onError*/},

() -> {/*onCompleted*/});
// Do some logic;
subscription.unsubscribe () ;

Responsible Client

Two flavors of Unsubscribing
 Client (Consumer) is unsubscribed from “inside”

{

observablelnstance.subscribe (new Subscriber<Long> ()

@Override
public void onNext (Long message) {
// Do something on each Message received

unsubscribe () ;

}

@Override
public void onError (Throwable e) {

// Do something on Error

}

@QOverride

public void onCompleted () {
// Do something when Observable completes

}
1) ;

OOP + RxJava, State of the Union

Asynchronous +
Resources on Demand

— O —
Observable

Erroris a First-
Class Citizen

v

d
<

Methods (FP style) Scalable
l

Transparent State

_ cmmm

Observer + Observable

TRANIKS [FOR YOUIR M=

Q & hopetully A

